Transcript of Fermi 14-Year Time-Lapse Narrated

00;00;01;17 - 00;00;03;23

[Music throughout]


00;00;03;27 - 00;00;06;03

Hi. My name is Judy Racusin.


00;00;06;03 - 00;00;09;27

I'm the deputy project scientist

on the Fermi Gamma-ray Space Telescope.


00;00;10;00 - 00;00;14;16

I'm here today to watch a video with you

of 14 years of observations


00;00;14;16 - 00;00;18;06

collected by the Fermi Large Area

Telescope, or the LAT.


00;00;18;08 - 00;00;20;25

This is the primary instrument

on the Fermi mission,


00;00;20;25 - 00;00;24;00

and it surveys the entire sky

every few hours.


00;00;24;03 - 00;00;26;19

This allows it to do a lot 

of really cool things.


00;00;26;19 - 00;00;29;10

It can look at sources

that vary on timescales


00;00;29;10 - 00;00;32;08

from a fraction of a second

to years on end.


00;00;34;29 - 00;00;37;14

There are two different kinds of maps

that we're going to look at.


00;00;37;14 - 00;00;40;08

One map is in galactic coordinates.


00;00;40;08 - 00;00;43;08

That means that there's a thin band

across the middle of the image,


00;00;43;08 - 00;00;44;22

and that's the Milky Way.


00;00;44;22 - 00;00;47;15

You've probably seen images

of the Milky Way in the optical.


00;00;51;27 - 00;00;53;27

The Milky Way in the gamma rays 

looks kind of similar,


00;00;53;27 - 00;00;57;29

except we're looking at a number

of different types of objects.


00;00;58;02 - 00;01;01;03

We'll also look at the gamma-ray sky

from another perspective,


00;01;01;03 - 00;01;04;10

where we're looking up and down

out of the galaxy which gives us


00;01;04;10 - 00;01;07;11

a much better view

of the extragalactic sky


00;01;07;16 - 00;01;11;20

and all the sources way outside

our galaxy in the distant universe.


00;01;11;23 - 00;01;15;13

In this map of the gamma ray sky,

where we have blue and red


00;01;15;13 - 00;01;19;29

and yellow tones, what we're seeing

are actually intensity maps.


00;01;20;01 - 00;01;23;27

Fermi isn't an imaging instrument

like you think of Hubble or Webb.


00;01;23;29 - 00;01;26;17

What it is is it's actually a

photon-collecting instrument.


00;01;26;17 - 00;01;28;21

It's a particle detector in space.


00;01;28;21 - 00;01;32;21

And we make these maps

by adding up all of the photons we collect.


00;01;32;24 - 00;01;36;16

In this case, these are over four days.


00;01;36;19 - 00;01;38;29

The color scheme, blue, red, yellow.


00;01;38;29 - 00;01;43;07

This is just a way for us to visualize it

because our eyes don't see gamma rays.


00;01;43;10 - 00;01;45;29

Those circular sources that you see in

the galactic plane


00;01;45;29 - 00;01;47;20

are actually individual objects.


00;01;47;20 - 00;01;49;11

Most of those are pulsars.


00;01;49;11 - 00;01;53;01

These are rapidly spinning, dense, stellar

remnants called neutron stars


00;01;53;07 - 00;01;57;20

that are actually varying,

pulsing on timescales from hundreds


00;01;57;26 - 00;02;01;13

of times per second to several seconds.


00;02;01;16 - 00;02;03;25

We see sources above and below


00;02;03;25 - 00;02;07;06

the galactic plane.

Those are largely blazars.


00;02;07;12 - 00;02;11;24

What that is, is a supermassive black

hole, millions to billions of times


00;02;11;24 - 00;02;15;14

the mass of our Sun,

the center of a galaxy that is active.


00;02;15;22 - 00;02;19;18

That means that there's gas and stars

falling into it,


00;02;19;20 - 00;02;24;18

and it produces jets of emission

And they're very chaotic systems.


00;02;24;21 - 00;02;27;08

So they are turning on

and they're turning off.


00;02;27;08 - 00;02;29;09

And that's actually the source

of a lot of the variability


00;02;29;09 - 00;02;32;18

that we'll see throughout this movie.


00;02;32;21 - 00;02;33;15

We have a team


00;02;33;15 - 00;02;37;05

of dedicated scientists,

what we call the flare advocates.


00;02;37;08 - 00;02;39;26

Their job is to look at data every day


00;02;39;26 - 00;02;43;03

that comes from Fermi

and look for these flaring sources.


00;02;43;05 - 00;02;45;03

It's not just so that we

know that they're there


00;02;45;03 - 00;02;48;09

and that we catalog them,

but some sources are interesting enough


00;02;48;09 - 00;02;51;16

that we want to tell our friends –

other space and ground-based telescopes –


00;02;51;16 - 00;02;56;11

that they should go look at the same

place and collect multiwavelength data


00;02;56;17 - 00;02;59;05

so we can better 

understand these outbursts.


00;03;03;19 - 00;03;04;18

You might notice


00;03;04;18 - 00;03;07;18

there are a few odd

discontinuities in these images.


00;03;07;22 - 00;03;11;03

This is a result of holes in the data

that we didn't want to be distracting.


00;03;11;09 - 00;03;15;04

So we patched those images

using frames before or after.


00;03;18;07 - 00;03;21;16

If you look carefully, you see one source

that isn't like the others.


00;03;21;18 - 00;03;23;02

It's actually moving.


00;03;23;02 - 00;03;25;04

And sometimes it gets brighter or fainter.


00;03;25;04 - 00;03;26;28

That's actually just the Sun.


00;03;26;28 - 00;03;29;02

The Sun is an interesting source

in the gamma rays.


00;03;29;02 - 00;03;32;01

It's not the brightest source in the sky

like it is in the optical,


00;03;32;04 - 00;03;35;07

but it's prominent

in its quiescent state


00;03;35;12 - 00;03;39;03

where we're just seeing cosmic rays

interacting with the solar atmosphere.


00;03;39;09 - 00;03;41;26

We also see it

when there are solar flares.


00;03;45;28 - 00;03;47;08

That bright flash right there


00;03;47;08 - 00;03;49;17

was a spectacular solar flare.


00;03;58;29 - 00;04;02;23

You may have noticed a lot of variations

in the sky over time.


00;04;02;29 - 00;04;06;13

It’s not that the galaxy itself is getting 

brighter or fainter.


00;04;06;13 - 00;04;11;01

It's that as Fermi surveys the sky,

it doesn't do it completely evenly.


00;04;11;03 - 00;04;14;29

Over many years, we accumulate

a very nice, even exposure of the sky,


00;04;15;02 - 00;04;18;08

but when we look at short timescales,

what we're seeing are variations


00;04;18;08 - 00;04;21;12

in the survey, not actual

variations in the sky.


00;04;21;13 - 00;04;25;07

But when you do see individual sources,

those are real variations –


00;04;25;13 - 00;04;28;14

from our own solar system

out to the distant universe.


00;04;37;12 - 00;04;39;27

The sky exposure pattern

seems to change a bit


00;04;39;27 - 00;04;41;26

starting about 2018.


00;04;41;26 - 00;04;46;09

This was due to a hardware issue where

one of our solar panels stopped rotating.


00;04;46;13 - 00;04;48;28

It's still fully functional

and Fermi has enough power


00;04;48;28 - 00;04;51;28

to operate both instruments

and the observatory.


00;04;52;02 - 00;04;52;25

What it means, though,


00;04;52;25 - 00;04;56;29

is that the way we observe the sky

and the timescales in which we survey


00;04;57;02 - 00;04;58;07

have changed a bit.


00;05;08;11 - 00;05;13;10

In our 14-year map there's 

over 7,000 total sources.


00;05;13;13 - 00;05;18;05

Almost 4,000 of those

are these active galaxies, these blazars.


00;05;18;07 - 00;05;22;16

There are several hundred pulsars

and in total something like


00;05;22;19 - 00;05;25;16

2,000 of these sources are variable.


00;05;33;09 - 00;05;34;03

This video


00;05;34;03 - 00;05;38;11

showing the first 14 years of Fermi

observations is just the beginning.


00;05;38;14 - 00;05;41;15

Fermi continues to observe

 the dynamic sky every day,


00;05;41;15 - 00;05;44;10

and we hope it'll continue to do so

for many years into the future.


00;05;57;27 - 00;06;09;11

Cumulative 14-Year Fermi Sky


00;06;09;28 - 00;06;14;29

NASA