Transcript of Roman Time Domain_Galactic Bulge Survey

00;00;00;00 - 00;00;01;16

[Music throughout] 


00;00;01;16 - 00;00;03;17

Almost all observations of the universe


00;00;03;17 - 00;00;06;17

come by collecting

light in various wavelengths.


00;00;06;22 - 00;00;09;17

This light can show variations

in brightness,


00;00;09;17 - 00;00;14;10

reveal structure in cosmic objects,

and contain huge amounts of information


00;00;14;10 - 00;00;18;13

in how its wavelengths are distributed

across a spectrum.


00;00;18;16 - 00;00;23;00

Researchers have captured these details

for decades, even centuries.


00;00;23;03 - 00;00;27;21

But often they are limited to just a brief

snapshot of an object in space.


00;00;27;24 - 00;00;29;18

A single still image.


00;00;30;04 - 00;00;31;10

 In recent years,


00;00;31;12 - 00;00;36;06

scientists have been making

more observations with a fourth component: time.


00;00;36;13 - 00;00;41;00

Space isn't static, and recording data

through a given duration called 


00;00;41;00 - 00;00;45;14

Time-Domain Astronomy tracks

how details of an object like brightness,


00;00;45;14 - 00;00;50;18

spectrum, location and structure

change. An object can vary,


00;00;50;23 - 00;00;53;15

it can move, or it can do both.


00;00;53;15 - 00;00;57;13

There are three main classes

of how an object can vary in time.


00;00;57;15 - 00;01;02;06

Periodic, quasiperiodic, and transient. Periodic change


00;01;02;06 - 00;01;05;22

means there is a regular fixed pattern

to the change.


00;01;05;25 - 00;01;09;26

Sunrise and sunset

or a blinking pulsar are examples.


00;01;09;29 - 00;01;13;03

Quasiperiodic means

that there is a pattern and the change


00;01;13;03 - 00;01;16;06

or event happens again and again,

but not as regularly,


00;01;16;09 - 00;01;20;20

like hurricanes or flashes

from hot material around black holes.


00;01;20;23 - 00;01;24;23

Transient events are less predictable

and often happen only once.


00;01;25;01 - 00;01;27;23

Earthquakes and supernovas are transients.


00;01;27;23 - 00;01;32;05

These are the hardest to observe because

they can be brief and start unexpectedly.


00;01;32;08 - 00;01;35;24

If telescopes aren't looking in the

right place, they miss the beginning or


00;01;35;24 - 00;01;37;23

even the entire event.


00;01;38;16 - 00;01;39;18

NASA's upcoming


00;01;39;18 - 00;01;42;26

Nancy Grace Roman Space

Telescope will be specially equipped


00;01;42;26 - 00;01;46;08

to be a groundbreaking tool for Time-Domain Astronomy.


00;01;46;11 - 00;01;49;28

It will observe from space

so it won't have daily time restrictions


00;01;49;28 - 00;01;53;11

like ground based telescopes,

which can only observe at night.


00;01;53;14 - 00;01;56;23

It will have image quality like Hubble,

but with a field of view


00;01;56;23 - 00;01;58;15

at least 100 times larger.


00;01;58;15 - 00;02;03;15

So it will be able to observe

large portions of the sky all at once.


00;02;03;18 - 00;02;07;05

Roman is a survey mission,

which means that in addition to a large,


00;02;07;05 - 00;02;08;23

singular field of view,


00;02;08;23 - 00;02;12;15

Roman can repoint that view

more efficiently during observation


00;02;12;15 - 00;02;18;14

periods, tiling even larger areas of sky

1000 times faster than Hubble.


00;02;18;17 - 00;02;21;16

For one of these, called the Galactic Bulge

Survey,


00;02;21;16 - 00;02;25;16

Roman will aim its expansive view

at the center of our galaxy


00;02;25;19 - 00;02;29;18

and observe a two-square-degree region

in infrared wavelengths


00;02;29;18 - 00;02;34;06

that cut through the obscuring dust

to reveal millions of stars.


00;02;34;09 - 00;02;36;29

During this survey, Roman will take a new image


00;02;36;29 - 00;02;41;23

every 2 minutes for more than 62 days

and then repeat this six times over


00;02;41;23 - 00;02;45;24

five years for a total of 400 days of coverage.


00;02;45;27 - 00;02;50;09

Roman will be watching for planets

transiting, or eclipsing, their host stars


00;02;50;15 - 00;02;54;16

and rare gravitational lensing events

where the gravity of foreground objects


00;02;54;16 - 00;02;58;24

lenses the light of background stars

causing changes in brightness.


00;02;58;27 - 00;03;03;04

These peaks can reveal new planetary

systems, rogue planets


00;03;03;04 - 00;03;07;19

untethered to a star, and even black holes

that would otherwise be invisible.


00;03;07;22 - 00;03;10;22

A single snapshot of the sky

can't show these events;


00;03;10;29 - 00;03;15;18

they require constant

or very regular monitoring to reveal.


00;03;15;21 - 00;03;20;24

Roman’s main objective in this survey is

simply finding new planets and black holes.


00;03;20;27 - 00;03;24;15

Astronomers anticipate

that Roman could discover over 1,000


00;03;24;15 - 00;03;29;19

microlensing and 100,000

transiting planets from this survey alone.


00;03;29;22 - 00;03;32;11

Observatories like the James Webb Space Telescope


00;03;32;11 - 00;03;35;20

can then follow up with a narrower,

more targeted view


00;03;35;25 - 00;03;40;04

and learn key details

about the most interesting discoveries.


00;03;40;07 - 00;03;44;23

Roman will also perform time-oriented surveys 

aimed at furthering our


00;03;44;23 - 00;03;50;19

understanding of the universe's history

and future. With its wide and steady gaze,


00;03;50;22 - 00;03;57;10

the Nancy Grace Roman Space Telescope will be

a key player in the future of Time Domain Astronomy.


00;04;01;16 - 00;04;06;15

[NASA]