JPSS Concept of Operations: Constellation Management

  • Released Wednesday, January 31, 2018
View full credits

This visualization illustrates how JPSS-1 (now NOAA-20) orbit phasing and raising works relative to SNPP, the notional way SNPP can be maneuvered a quarter-orbit along-track separation from JPSS-1 prior to launch of JPSS-2, and how a three-satellite constellation operates on a sun-synchronous orbit node-crossing including sensor-swath footprints as the world turns below.
This video is also available on our YouTube channel.

NOAA and NASA partnered to implement the Joint Polar Satellite System (JPSS). The JPSS Program constitutes the next series of U.S. civilian polar orbiting environmental remote sensing satellites and sensors that have been flown historically on polar satellites. These satellites will implement NOAA’s requirements for collection of global multi-spectral radiometry and other specialized meteorological and oceanographic data, via remote sensing of land, sea, and the atmosphere. These data will support NOAA’s mission for continuous observations of the Earth’s environment necessary to understand and predict changes in weather, climate, oceans and coasts, which support the Nation’s economy, and protect lives and property.

The JPSS constellation of satellites starts with JPSS-1 (now designated NOAA-20) sharing the polar orbit occupied by the currently primary operating Suomi National Polar-orbiting Partnership (S-NPP) satellite. JPSS constellation management consists of planning each mission such that a newly launched satellite (i.e. NOAA-20) is phased to reach an initial parking orbit for raising to its required operational orbit altitude in a half-orbit position relative to the existing (i.e. S-NPP) satellite. A planned sequence of orbit-raising maneuvers are executed to achieve this constellation configuration. When the satellite orbit raising and commissioning nominally completes the new satellite assumes a primary designation and S-NPP, in this case, assumes a secondary satellite designation. When the next JPSS satellite is to be launched (i.e. JPPS-2 ~2021) plans are to maneuver the secondary satellite beforehand to a different position so the next satellite can be phased and raised into a half-orbit separation from the current primary satellite. The resulting three-satellite constellation maintains primary and secondary operating satellites ~ 50 minutes apart and the now tertiary satellite approximately a quarter-orbit separation between the other two – all generating remote sensing data of the earth.

To learn more about JPSS, visit http://www.jpss.noaa.gov/

This is part 1 (of 3) of the full JPSS Constellation Management visualization. The sequence introduces the SNPP orbit and describes how JPSS-1 orbit phasing and raising works relative to SNPP.

This is part 2 (of 3) of the full JPSS Constellation Management visualization. This sequence describes how SNPP maneuvers to a quarter orbit separation from JPSS-1 in order to prepare for the launch of JPSS-2.

This is part 3 (of 3) of the full JPSS Constellation Management visualization. This sequence shows SNPP, JPSS-1, and JPSS-2 in their final configuration. The visualization concludes with a view comparing the node crossings and sensor swaths of each spacecraft.

Still image showing configuration shortly after JPSS-1 launch, before orbit raising maneuvers begin

Still image showing configuration shortly after JPSS-1 launch, before orbit raising maneuvers begin



Credits

Please give credit for this item to:
NASA's Scientific Visualization Studio

Release date

This page was originally published on Wednesday, January 31, 2018.
This page was last updated on Wednesday, October 9, 2024 at 12:07 AM EDT.


Datasets used

Note: While we identify the data sets used on this page, we do not store any further details, nor the data sets themselves on our site.