PREFIRE First Light

  • Released Tuesday, September 3, 2024
View full credits

NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.

One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.

The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.

This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.

The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.

The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.



Credits

Please give credit for this item to:
NASA's Scientific Visualization Studio

Release date

This page was originally published on Tuesday, September 3, 2024.
This page was last updated on Thursday, October 10, 2024 at 12:15 AM EDT.